Files
jobs/web/scraper.py
zwitschi 2185a07ff0
Some checks failed
CI/CD Pipeline / test (push) Failing after 4m9s
feat: Implement email sending utilities and templates for job notifications
- Added email_service.py for sending emails with SMTP configuration.
- Introduced email_templates.py to render job alert email subjects and bodies.
- Enhanced scraper.py to extract contact information from job listings.
- Updated settings.js to handle negative keyword input validation.
- Created email.html and email_templates.html for managing email subscriptions and templates in the admin interface.
- Modified base.html to include links for email alerts and templates.
- Expanded user settings.html to allow management of negative keywords.
- Updated utils.py to include functions for retrieving negative keywords and email settings.
- Enhanced job filtering logic to exclude jobs containing negative keywords.
2025-11-28 18:15:08 +01:00

231 lines
7.9 KiB
Python

from datetime import datetime, UTC
from bs4 import BeautifulSoup
from typing import List, Dict, Set
from urllib.parse import urlparse, parse_qs
import re
from web.utils import (
get_base_url,
safe_get_text,
safe_get_attr,
make_request_with_retry,
get_negative_keywords,
)
def extract_contact_info(reply_url) -> Dict[str, str]:
"""Extract contact information from reply URL.
Parses mailto links, phone links, and contact form URLs to extract:
- email: Email address (from mailto links)
- phone: Phone number (from tel links or URL parameters)
- contact_name: Contact person name (if available in URL parameters)
Returns a dict with email, phone, and contact_name keys (values may be "N/A").
"""
contact_info = {
"email": "N/A",
"phone": "N/A",
"contact_name": "N/A"
}
# Handle None or empty cases
if not reply_url or reply_url == "N/A":
return contact_info
reply_url = str(reply_url).strip()
if not reply_url or reply_url == "N/A":
return contact_info
try:
# Check for mailto links
if reply_url.startswith("mailto:"):
email_part = reply_url.replace("mailto:", "")
# Extract email (may contain ?subject=...)
email = email_part.split("?")[0]
contact_info["email"] = email
return contact_info
# Check for tel links
if reply_url.startswith("tel:"):
phone = reply_url.replace("tel:", "")
contact_info["phone"] = phone
return contact_info
# Parse as URL
if reply_url.startswith("http"):
parsed = urlparse(reply_url)
params = parse_qs(parsed.query)
# Try to extract email from parameters
for key in ["email", "from_email", "sender_email", "contact_email"]:
if key in params:
contact_info["email"] = params[key][0]
break
# Try to extract phone from parameters
for key in ["phone", "tel", "telephone"]:
if key in params:
contact_info["phone"] = params[key][0]
break
# Try to extract contact name from parameters
for key in ["contact_name", "from_name", "name"]:
if key in params:
contact_info["contact_name"] = params[key][0]
break
except Exception:
pass
return contact_info
def scrape_listings_page(listing, region: str, keyword: str, seen_urls: Set[str]) -> List:
"""Parse a single job listing."""
try:
title_elem = listing.find("div", class_="title")
url_elem = listing.find("a")
pay_elem = listing.find("div", class_="attr remuneration")
if pay_elem:
pay_elem = pay_elem.find("span", class_="valu")
location_elem = listing.find("div", class_="location")
if not title_elem or not url_elem:
return []
title = title_elem.get_text(strip=True)
url = url_elem["href"]
pay = pay_elem.get_text(strip=True) if pay_elem else "N/A"
location = location_elem.get_text(
strip=True) if location_elem else "N/A"
status = "DUPLICATE" if url in seen_urls else "NEW"
if url in seen_urls:
return []
# job_summary variable retained for parity but not used
job_summary = f"{status} [{region}/{keyword}] | Title: {title[:50]}{'...' if len(title) > 50 else ''} | Location: {location} | URL: {url}"
_ = job_summary
return [datetime.now(UTC).isoformat(), region, keyword, title, pay, location, url]
except (AttributeError, KeyError):
return []
def scrape_job_page(content: str, url: str) -> Dict:
"""Scrape job details from a job listing page."""
soup = BeautifulSoup(content, "html.parser")
# Extract reply button
reply_button = soup.find("button", class_="reply-button")
if reply_button:
reply_url = safe_get_attr(reply_button, "data-href")
else:
reply_url = "N/A"
# Extract contact information from reply URL
contact_info = extract_contact_info(reply_url)
# Extract each field
title = safe_get_text(soup.find("h1", class_="postingtitle"))
company = safe_get_text(soup.find("h2", class_="company-name"))
map_elem = soup.find("div", id="map")
if map_elem:
lat = safe_get_attr(map_elem, "data-latitude")
lon = safe_get_attr(map_elem, "data-longitude")
accuracy = safe_get_attr(map_elem, "data-accuracy")
location = f"Lat: {lat}, Lon: {lon}, Accuracy: {accuracy}"
else:
location = "N/A"
mapaddress = soup.find("div", class_="mapaddress")
if mapaddress:
location = safe_get_text(mapaddress) + " " + location
description_elem = soup.find("section", id="postingbody")
if description_elem:
de = BeautifulSoup(str(description_elem), "html.parser")
qr_code_elem = de.find(class_="print-qrcode-label")
# Remove QR code if it exists
if qr_code_elem:
qr_code_elem.decompose()
description = de.text.strip()
else:
description = ''
posting_info = soup.find("div", class_="postinginfos")
if posting_info:
pi = BeautifulSoup(str(posting_info), "html.parser")
postinginfo_tags = pi.find_all("p", class_="postinginfo")
job_id = safe_get_text(postinginfo_tags[0]) if postinginfo_tags else ""
posted_time_elem = pi.find("time", class_="date timeago")
posted_time = safe_get_attr(
posted_time_elem, "datetime") if posted_time_elem else ""
else:
job_id = ""
posted_time = ""
# Negative keyword detection
negative_keyword_match = None
negative_match_field = None
negative_keywords = get_negative_keywords()
if negative_keywords:
fields_to_check = {
"title": title or "",
"company": company or "",
"location": location or "",
"description": description or "",
}
for keyword in negative_keywords:
if not keyword:
continue
pattern = re.compile(
r"\b" + re.escape(keyword) + r"\b", re.IGNORECASE)
for field_name, field_value in fields_to_check.items():
if field_value and pattern.search(field_value):
negative_keyword_match = keyword
negative_match_field = field_name
break
if negative_keyword_match:
break
return {
"url": url,
"title": title,
"company": company,
"location": location,
"description": description,
"id": job_id,
"posted_time": posted_time,
"reply_url": reply_url,
"contact_email": contact_info["email"],
"contact_phone": contact_info["phone"],
"contact_name": contact_info["contact_name"],
"negative_keyword_match": negative_keyword_match,
"negative_match_field": negative_match_field,
"is_negative_match": bool(negative_keyword_match),
}
def scrape_job_data(content: str, region: str, keyword: str, seen_urls: Set[str]) -> List[List]:
"""Parse HTML content to extract job listings."""
soup = BeautifulSoup(content, "html.parser")
listings = soup.find_all("li", class_="cl-static-search-result")
new_rows = []
for i, listing in enumerate(listings):
job_data = scrape_listings_page(listing, region, keyword, seen_urls)
if job_data:
new_rows.append(job_data)
return new_rows
def process_region_keyword(region: str, keyword: str, seen_urls: Set[str]) -> List[List]:
"""Process a single region and keyword."""
url = get_base_url().format(region=region, keyword=keyword.replace(" ", "+"))
content = make_request_with_retry(url, 3)
if content is None:
return []
return scrape_job_data(content, region, keyword, seen_urls)