Files
calminer/services/reporting.py
zwitschi ce9c174b53
Some checks failed
CI / lint (push) Failing after 1m14s
CI / test (push) Has been skipped
CI / build (push) Has been skipped
feat: Enhance project and scenario creation with monitoring metrics
- Added monitoring metrics for project creation success and error handling in `ProjectRepository`.
- Implemented similar monitoring for scenario creation in `ScenarioRepository`.
- Refactored `run_monte_carlo` function in `simulation.py` to include timing and success/error metrics.
- Introduced new CSS styles for headers, alerts, and navigation buttons in `main.css` and `projects.css`.
- Created a new JavaScript file for navigation logic to handle chevron buttons.
- Updated HTML templates to include new navigation buttons and improved styling for buttons.
- Added tests for reporting service and routes to ensure proper functionality and access control.
- Removed unused imports and optimized existing test files for better clarity and performance.
2025-11-12 10:36:24 +01:00

816 lines
26 KiB
Python

from __future__ import annotations
"""Reporting service layer aggregating deterministic and simulation metrics."""
from dataclasses import dataclass, field
from datetime import date
import math
from typing import Mapping, Sequence
from urllib.parse import urlencode
from fastapi import Request
from models import FinancialCategory, Project, Scenario
from services.financial import (
CashFlow,
ConvergenceError,
PaybackNotReachedError,
internal_rate_of_return,
net_present_value,
payback_period,
)
from services.simulation import (
CashFlowSpec,
SimulationConfig,
SimulationMetric,
SimulationResult,
run_monte_carlo,
)
from services.unit_of_work import UnitOfWork
DEFAULT_DISCOUNT_RATE = 0.1
DEFAULT_ITERATIONS = 500
DEFAULT_PERCENTILES: tuple[float, float, float] = (5.0, 50.0, 95.0)
_COST_CATEGORY_SIGNS: Mapping[FinancialCategory, float] = {
FinancialCategory.REVENUE: 1.0,
FinancialCategory.CAPITAL_EXPENDITURE: -1.0,
FinancialCategory.OPERATING_EXPENDITURE: -1.0,
FinancialCategory.CONTINGENCY: -1.0,
FinancialCategory.OTHER: -1.0,
}
@dataclass(frozen=True)
class IncludeOptions:
"""Flags controlling optional sections in report payloads."""
distribution: bool = False
samples: bool = False
@dataclass(slots=True)
class ReportFilters:
"""Filter parameters applied when selecting scenarios for a report."""
scenario_ids: set[int] | None = None
start_date: date | None = None
end_date: date | None = None
def matches(self, scenario: Scenario) -> bool:
if self.scenario_ids is not None and scenario.id not in self.scenario_ids:
return False
if self.start_date and scenario.start_date and scenario.start_date < self.start_date:
return False
if self.end_date and scenario.end_date and scenario.end_date > self.end_date:
return False
return True
def to_dict(self) -> dict[str, object]:
payload: dict[str, object] = {}
if self.scenario_ids is not None:
payload["scenario_ids"] = sorted(self.scenario_ids)
if self.start_date is not None:
payload["start_date"] = self.start_date
if self.end_date is not None:
payload["end_date"] = self.end_date
return payload
@dataclass(slots=True)
class ScenarioFinancialTotals:
currency: str | None
inflows: float
outflows: float
net: float
by_category: dict[str, float]
def to_dict(self) -> dict[str, object]:
return {
"currency": self.currency,
"inflows": _round_optional(self.inflows),
"outflows": _round_optional(self.outflows),
"net": _round_optional(self.net),
"by_category": {
key: _round_optional(value) for key, value in sorted(self.by_category.items())
},
}
@dataclass(slots=True)
class ScenarioDeterministicMetrics:
currency: str | None
discount_rate: float
compounds_per_year: int
npv: float | None
irr: float | None
payback_period: float | None
notes: list[str] = field(default_factory=list)
def to_dict(self) -> dict[str, object]:
return {
"currency": self.currency,
"discount_rate": _round_optional(self.discount_rate, digits=4),
"compounds_per_year": self.compounds_per_year,
"npv": _round_optional(self.npv),
"irr": _round_optional(self.irr, digits=6),
"payback_period": _round_optional(self.payback_period, digits=4),
"notes": self.notes,
}
@dataclass(slots=True)
class ScenarioMonteCarloResult:
available: bool
notes: list[str] = field(default_factory=list)
result: SimulationResult | None = None
include_samples: bool = False
def to_dict(self) -> dict[str, object]:
if not self.available or self.result is None:
return {
"available": False,
"notes": self.notes,
}
metrics: dict[str, dict[str, object]] = {}
for metric, summary in self.result.summaries.items():
metrics[metric.value] = {
"mean": _round_optional(summary.mean),
"std_dev": _round_optional(summary.std_dev),
"minimum": _round_optional(summary.minimum),
"maximum": _round_optional(summary.maximum),
"percentiles": {
f"{percentile:g}": _round_optional(value)
for percentile, value in sorted(summary.percentiles.items())
},
"sample_size": summary.sample_size,
"failed_runs": summary.failed_runs,
}
samples_payload: dict[str, list[float | None]] | None = None
if self.include_samples and self.result.samples:
samples_payload = {}
for metric, samples in self.result.samples.items():
samples_payload[metric.value] = [
_sanitize_float(sample) for sample in samples.tolist()
]
payload: dict[str, object] = {
"available": True,
"iterations": self.result.iterations,
"metrics": metrics,
"notes": self.notes,
}
if samples_payload:
payload["samples"] = samples_payload
return payload
@dataclass(slots=True)
class ScenarioReport:
scenario: Scenario
totals: ScenarioFinancialTotals
deterministic: ScenarioDeterministicMetrics
monte_carlo: ScenarioMonteCarloResult | None
def to_dict(self) -> dict[str, object]:
scenario_info = {
"id": self.scenario.id,
"project_id": self.scenario.project_id,
"name": self.scenario.name,
"description": self.scenario.description,
"status": self.scenario.status.value if hasattr(self.scenario.status, 'value') else self.scenario.status,
"start_date": self.scenario.start_date,
"end_date": self.scenario.end_date,
"currency": self.scenario.currency,
"primary_resource": self.scenario.primary_resource.value
if self.scenario.primary_resource and hasattr(self.scenario.primary_resource, 'value')
else self.scenario.primary_resource,
"discount_rate": _round_optional(self.deterministic.discount_rate, digits=4),
"created_at": self.scenario.created_at,
"updated_at": self.scenario.updated_at,
"simulation_parameter_count": len(self.scenario.simulation_parameters or []),
}
payload: dict[str, object] = {
"scenario": scenario_info,
"financials": self.totals.to_dict(),
"metrics": self.deterministic.to_dict(),
}
if self.monte_carlo is not None:
payload["monte_carlo"] = self.monte_carlo.to_dict()
return payload
@dataclass(slots=True)
class AggregatedMetric:
average: float | None
minimum: float | None
maximum: float | None
def to_dict(self) -> dict[str, object]:
return {
"average": _round_optional(self.average),
"minimum": _round_optional(self.minimum),
"maximum": _round_optional(self.maximum),
}
@dataclass(slots=True)
class ProjectAggregates:
total_inflows: float
total_outflows: float
total_net: float
deterministic_metrics: dict[str, AggregatedMetric]
def to_dict(self) -> dict[str, object]:
return {
"financials": {
"total_inflows": _round_optional(self.total_inflows),
"total_outflows": _round_optional(self.total_outflows),
"total_net": _round_optional(self.total_net),
},
"deterministic_metrics": {
metric: data.to_dict()
for metric, data in sorted(self.deterministic_metrics.items())
},
}
@dataclass(slots=True)
class MetricComparison:
metric: str
direction: str
best: tuple[int, str, float] | None
worst: tuple[int, str, float] | None
average: float | None
def to_dict(self) -> dict[str, object]:
return {
"metric": self.metric,
"direction": self.direction,
"best": _comparison_entry(self.best),
"worst": _comparison_entry(self.worst),
"average": _round_optional(self.average),
}
def parse_include_tokens(raw: str | None) -> IncludeOptions:
tokens: set[str] = set()
if raw:
for part in raw.split(","):
token = part.strip().lower()
if token:
tokens.add(token)
if "all" in tokens:
return IncludeOptions(distribution=True, samples=True)
return IncludeOptions(
distribution=bool({"distribution", "monte_carlo", "mc"} & tokens),
samples="samples" in tokens,
)
def validate_percentiles(values: Sequence[float] | None) -> tuple[float, ...]:
if not values:
return DEFAULT_PERCENTILES
seen: set[float] = set()
cleaned: list[float] = []
for value in values:
percentile = float(value)
if percentile < 0.0 or percentile > 100.0:
raise ValueError("Percentiles must be between 0 and 100.")
if percentile not in seen:
seen.add(percentile)
cleaned.append(percentile)
if not cleaned:
return DEFAULT_PERCENTILES
return tuple(cleaned)
class ReportingService:
"""Coordinates project and scenario reporting aggregation."""
def __init__(self, uow: UnitOfWork) -> None:
self._uow = uow
def project_summary(
self,
project: Project,
*,
filters: ReportFilters,
include: IncludeOptions,
iterations: int,
percentiles: tuple[float, ...],
) -> dict[str, object]:
scenarios = self._load_scenarios(project.id, filters)
reports = [
self._build_scenario_report(
scenario,
include_distribution=include.distribution,
include_samples=include.samples,
iterations=iterations,
percentiles=percentiles,
)
for scenario in scenarios
]
aggregates = self._aggregate_project(reports)
return {
"project": _project_payload(project),
"scenario_count": len(reports),
"filters": filters.to_dict(),
"aggregates": aggregates.to_dict(),
"scenarios": [report.to_dict() for report in reports],
}
def scenario_comparison(
self,
project: Project,
scenarios: Sequence[Scenario],
*,
include: IncludeOptions,
iterations: int,
percentiles: tuple[float, ...],
) -> dict[str, object]:
reports = [
self._build_scenario_report(
self._reload_scenario(scenario.id),
include_distribution=include.distribution,
include_samples=include.samples,
iterations=iterations,
percentiles=percentiles,
)
for scenario in scenarios
]
comparison = {
metric: data.to_dict()
for metric, data in self._build_comparisons(reports).items()
}
return {
"project": _project_payload(project),
"scenarios": [report.to_dict() for report in reports],
"comparison": comparison,
}
def scenario_distribution(
self,
scenario: Scenario,
*,
include: IncludeOptions,
iterations: int,
percentiles: tuple[float, ...],
) -> dict[str, object]:
report = self._build_scenario_report(
self._reload_scenario(scenario.id),
include_distribution=True,
include_samples=include.samples,
iterations=iterations,
percentiles=percentiles,
)
return {
"scenario": report.to_dict()["scenario"],
"summary": report.totals.to_dict(),
"metrics": report.deterministic.to_dict(),
"monte_carlo": (
report.monte_carlo.to_dict() if report.monte_carlo else {
"available": False}
),
}
def _load_scenarios(self, project_id: int, filters: ReportFilters) -> list[Scenario]:
scenarios = self._uow.scenarios.list_for_project(
project_id, with_children=True)
return [scenario for scenario in scenarios if filters.matches(scenario)]
def _reload_scenario(self, scenario_id: int) -> Scenario:
return self._uow.scenarios.get(scenario_id, with_children=True)
def _build_scenario_report(
self,
scenario: Scenario,
*,
include_distribution: bool,
include_samples: bool,
iterations: int,
percentiles: tuple[float, ...],
) -> ScenarioReport:
cash_flows, totals = _build_cash_flows(scenario)
deterministic = _calculate_deterministic_metrics(
scenario, cash_flows, totals)
monte_carlo: ScenarioMonteCarloResult | None = None
if include_distribution:
monte_carlo = _run_monte_carlo(
scenario,
cash_flows,
include_samples=include_samples,
iterations=iterations,
percentiles=percentiles,
)
return ScenarioReport(
scenario=scenario,
totals=totals,
deterministic=deterministic,
monte_carlo=monte_carlo,
)
def _aggregate_project(self, reports: Sequence[ScenarioReport]) -> ProjectAggregates:
total_inflows = sum(report.totals.inflows for report in reports)
total_outflows = sum(report.totals.outflows for report in reports)
total_net = sum(report.totals.net for report in reports)
metrics: dict[str, AggregatedMetric] = {}
for metric_name in ("npv", "irr", "payback_period"):
values = [
getattr(report.deterministic, metric_name)
for report in reports
if getattr(report.deterministic, metric_name) is not None
]
if values:
metrics[metric_name] = AggregatedMetric(
average=sum(values) / len(values),
minimum=min(values),
maximum=max(values),
)
return ProjectAggregates(
total_inflows=total_inflows,
total_outflows=total_outflows,
total_net=total_net,
deterministic_metrics=metrics,
)
def _build_comparisons(
self, reports: Sequence[ScenarioReport]
) -> Mapping[str, MetricComparison]:
comparisons: dict[str, MetricComparison] = {}
for metric_name, direction in (
("npv", "higher_is_better"),
("irr", "higher_is_better"),
("payback_period", "lower_is_better"),
):
entries: list[tuple[int, str, float]] = []
for report in reports:
value = getattr(report.deterministic, metric_name)
if value is None:
continue
entries.append(
(report.scenario.id, report.scenario.name, value))
if not entries:
continue
if direction == "higher_is_better":
best = max(entries, key=lambda item: item[2])
worst = min(entries, key=lambda item: item[2])
else:
best = min(entries, key=lambda item: item[2])
worst = max(entries, key=lambda item: item[2])
average = sum(item[2] for item in entries) / len(entries)
comparisons[metric_name] = MetricComparison(
metric=metric_name,
direction=direction,
best=best,
worst=worst,
average=average,
)
return comparisons
def build_project_summary_context(
self,
project: Project,
filters: ReportFilters,
include: IncludeOptions,
iterations: int,
percentiles: tuple[float, ...],
request: Request,
) -> dict[str, object]:
"""Build template context for project summary page."""
scenarios = self._load_scenarios(project.id, filters)
reports = [
self._build_scenario_report(
scenario,
include_distribution=include.distribution,
include_samples=include.samples,
iterations=iterations,
percentiles=percentiles,
)
for scenario in scenarios
]
aggregates = self._aggregate_project(reports)
return {
"request": request,
"project": _project_payload(project),
"scenario_count": len(reports),
"aggregates": aggregates.to_dict(),
"scenarios": [report.to_dict() for report in reports],
"filters": filters.to_dict(),
"include_options": include,
"iterations": iterations,
"percentiles": percentiles,
"title": f"Project Summary · {project.name}",
"subtitle": "Aggregated financial and simulation insights across scenarios.",
"actions": [
{
"href": request.url_for(
"reports.project_summary",
project_id=project.id,
),
"label": "Download JSON",
}
],
}
def build_scenario_comparison_context(
self,
project: Project,
scenarios: Sequence[Scenario],
include: IncludeOptions,
iterations: int,
percentiles: tuple[float, ...],
request: Request,
) -> dict[str, object]:
"""Build template context for scenario comparison page."""
reports = [
self._build_scenario_report(
self._reload_scenario(scenario.id),
include_distribution=include.distribution,
include_samples=include.samples,
iterations=iterations,
percentiles=percentiles,
)
for scenario in scenarios
]
comparison = {
metric: data.to_dict()
for metric, data in self._build_comparisons(reports).items()
}
comparison_json_url = request.url_for(
"reports.project_scenario_comparison",
project_id=project.id,
)
scenario_ids = [str(s.id) for s in scenarios]
comparison_query = urlencode(
[("scenario_ids", str(identifier)) for identifier in scenario_ids]
)
if comparison_query:
comparison_json_url = f"{comparison_json_url}?{comparison_query}"
return {
"request": request,
"project": _project_payload(project),
"scenarios": [report.to_dict() for report in reports],
"comparison": comparison,
"include_options": include,
"iterations": iterations,
"percentiles": percentiles,
"title": f"Scenario Comparison · {project.name}",
"subtitle": "Evaluate deterministic metrics and Monte Carlo trends side by side.",
"actions": [
{
"href": comparison_json_url,
"label": "Download JSON",
}
],
}
def build_scenario_distribution_context(
self,
scenario: Scenario,
include: IncludeOptions,
iterations: int,
percentiles: tuple[float, ...],
request: Request,
) -> dict[str, object]:
"""Build template context for scenario distribution page."""
report = self._build_scenario_report(
self._reload_scenario(scenario.id),
include_distribution=True,
include_samples=include.samples,
iterations=iterations,
percentiles=percentiles,
)
return {
"request": request,
"scenario": report.to_dict()["scenario"],
"summary": report.totals.to_dict(),
"metrics": report.deterministic.to_dict(),
"monte_carlo": (
report.monte_carlo.to_dict() if report.monte_carlo else {
"available": False}
),
"include_options": include,
"iterations": iterations,
"percentiles": percentiles,
"title": f"Scenario Distribution · {scenario.name}",
"subtitle": "Deterministic and simulated distributions for a single scenario.",
"actions": [
{
"href": request.url_for(
"reports.scenario_distribution",
scenario_id=scenario.id,
),
"label": "Download JSON",
}
],
}
def _build_cash_flows(scenario: Scenario) -> tuple[list[CashFlow], ScenarioFinancialTotals]:
cash_flows: list[CashFlow] = []
by_category: dict[str, float] = {}
inflows = 0.0
outflows = 0.0
net = 0.0
period_index = 0
for financial_input in scenario.financial_inputs or []:
sign = _COST_CATEGORY_SIGNS.get(financial_input.category, -1.0)
amount = float(financial_input.amount) * sign
net += amount
if amount >= 0:
inflows += amount
else:
outflows += -amount
by_category.setdefault(financial_input.category.value, 0.0)
by_category[financial_input.category.value] += amount
if financial_input.effective_date is not None:
cash_flows.append(
CashFlow(amount=amount, date=financial_input.effective_date)
)
else:
cash_flows.append(
CashFlow(amount=amount, period_index=period_index))
period_index += 1
currency = scenario.currency
if currency is None and scenario.financial_inputs:
currency = scenario.financial_inputs[0].currency
totals = ScenarioFinancialTotals(
currency=currency,
inflows=inflows,
outflows=outflows,
net=net,
by_category=by_category,
)
return cash_flows, totals
def _calculate_deterministic_metrics(
scenario: Scenario,
cash_flows: Sequence[CashFlow],
totals: ScenarioFinancialTotals,
) -> ScenarioDeterministicMetrics:
notes: list[str] = []
discount_rate = _normalise_discount_rate(scenario.discount_rate)
if scenario.discount_rate is None:
notes.append(
f"Discount rate not set; defaulted to {discount_rate:.2%}."
)
if not cash_flows:
notes.append(
"No financial inputs available for deterministic metrics.")
return ScenarioDeterministicMetrics(
currency=totals.currency,
discount_rate=discount_rate,
compounds_per_year=1,
npv=None,
irr=None,
payback_period=None,
notes=notes,
)
npv_value: float | None
try:
npv_value = net_present_value(
discount_rate,
cash_flows,
compounds_per_year=1,
)
except ValueError as exc:
npv_value = None
notes.append(f"NPV unavailable: {exc}.")
irr_value: float | None
try:
irr_value = internal_rate_of_return(
cash_flows,
compounds_per_year=1,
)
except (ValueError, ConvergenceError) as exc:
irr_value = None
notes.append(f"IRR unavailable: {exc}.")
payback_value: float | None
try:
payback_value = payback_period(
cash_flows,
compounds_per_year=1,
)
except (ValueError, PaybackNotReachedError) as exc:
payback_value = None
notes.append(f"Payback period unavailable: {exc}.")
return ScenarioDeterministicMetrics(
currency=totals.currency,
discount_rate=discount_rate,
compounds_per_year=1,
npv=npv_value,
irr=irr_value,
payback_period=payback_value,
notes=notes,
)
def _run_monte_carlo(
scenario: Scenario,
cash_flows: Sequence[CashFlow],
*,
include_samples: bool,
iterations: int,
percentiles: tuple[float, ...],
) -> ScenarioMonteCarloResult:
if not cash_flows:
return ScenarioMonteCarloResult(
available=False,
notes=["No financial inputs available for Monte Carlo simulation."],
)
discount_rate = _normalise_discount_rate(scenario.discount_rate)
specs = [CashFlowSpec(cash_flow=flow) for flow in cash_flows]
notes: list[str] = []
if not scenario.simulation_parameters:
notes.append(
"Scenario has no stochastic parameters; simulation mirrors deterministic cash flows."
)
config = SimulationConfig(
iterations=iterations,
discount_rate=discount_rate,
metrics=(
SimulationMetric.NPV,
SimulationMetric.IRR,
SimulationMetric.PAYBACK,
),
percentiles=percentiles,
return_samples=include_samples,
)
try:
result = run_monte_carlo(specs, config)
except Exception as exc: # pragma: no cover - safeguard for unexpected failures
notes.append(f"Simulation failed: {exc}.")
return ScenarioMonteCarloResult(available=False, notes=notes)
return ScenarioMonteCarloResult(
available=True,
notes=notes,
result=result,
include_samples=include_samples,
)
def _normalise_discount_rate(value: float | None) -> float:
if value is None:
return DEFAULT_DISCOUNT_RATE
rate = float(value)
if rate > 1.0:
return rate / 100.0
return rate
def _sanitize_float(value: float | None) -> float | None:
if value is None:
return None
if math.isnan(value) or math.isinf(value):
return None
return float(value)
def _round_optional(value: float | None, *, digits: int = 2) -> float | None:
clean = _sanitize_float(value)
if clean is None:
return None
return round(clean, digits)
def _comparison_entry(entry: tuple[int, str, float] | None) -> dict[str, object] | None:
if entry is None:
return None
scenario_id, name, value = entry
return {
"scenario_id": scenario_id,
"name": name,
"value": _round_optional(value),
}
def _project_payload(project: Project) -> dict[str, object]:
return {
"id": project.id,
"name": project.name,
"location": project.location,
"operation_type": project.operation_type.value,
"description": project.description,
"created_at": project.created_at,
"updated_at": project.updated_at,
}