Files
calminer/services/reporting.py
zwitschi e73a987d25 Refactor and enhance CalMiner application
- Updated README.md to reflect new features and usage instructions.
- Removed deprecated Dashboard.html component and integrated dashboard functionality directly into the main application.
- Revised architecture documentation for clarity and added module map and request flow diagrams.
- Enhanced maintenance model to include equipment association and cost tracking.
- Updated requirements.txt to include new dependencies (httpx, pandas, numpy).
- Improved consumption, maintenance, production, and reporting routes with better validation and response handling.
- Added unit tests for maintenance and production routes, ensuring proper CRUD operations and validation.
- Enhanced reporting service to calculate and return detailed summary statistics.
- Redesigned Dashboard.html for improved user experience and integrated Chart.js for visualizing simulation results.
2025-10-20 20:53:55 +02:00

58 lines
1.7 KiB
Python

from statistics import mean, median, pstdev
from typing import Dict, Iterable, List, Union
def _extract_results(simulation_results: Iterable[Dict[str, float]]) -> List[float]:
values: List[float] = []
for item in simulation_results:
if not isinstance(item, dict):
continue
value = item.get("result")
if isinstance(value, (int, float)):
values.append(float(value))
return values
def _percentile(values: List[float], percentile: float) -> float:
if not values:
return 0.0
sorted_values = sorted(values)
if len(sorted_values) == 1:
return sorted_values[0]
index = (percentile / 100) * (len(sorted_values) - 1)
lower = int(index)
upper = min(lower + 1, len(sorted_values) - 1)
weight = index - lower
return sorted_values[lower] * (1 - weight) + sorted_values[upper] * weight
def generate_report(simulation_results: List[Dict[str, float]]) -> Dict[str, Union[float, int]]:
"""Aggregate basic statistics for simulation outputs."""
values = _extract_results(simulation_results)
if not values:
return {
"count": 0,
"mean": 0.0,
"median": 0.0,
"min": 0.0,
"max": 0.0,
"std_dev": 0.0,
"percentile_10": 0.0,
"percentile_90": 0.0,
}
summary: Dict[str, Union[float, int]] = {
"count": len(values),
"mean": mean(values),
"median": median(values),
"min": min(values),
"max": max(values),
"percentile_10": _percentile(values, 10),
"percentile_90": _percentile(values, 90),
}
summary["std_dev"] = pstdev(values) if len(values) > 1 else 0.0
return summary