feat: Enhance project and scenario creation with monitoring metrics
- Added monitoring metrics for project creation success and error handling in `ProjectRepository`. - Implemented similar monitoring for scenario creation in `ScenarioRepository`. - Refactored `run_monte_carlo` function in `simulation.py` to include timing and success/error metrics. - Introduced new CSS styles for headers, alerts, and navigation buttons in `main.css` and `projects.css`. - Created a new JavaScript file for navigation logic to handle chevron buttons. - Updated HTML templates to include new navigation buttons and improved styling for buttons. - Added tests for reporting service and routes to ensure proper functionality and access control. - Removed unused imports and optimized existing test files for better clarity and performance.
This commit is contained in:
@@ -2,7 +2,8 @@ from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
from typing import Any, Dict, Iterable, Mapping, Sequence
|
||||
from typing import Any, Dict, Mapping, Sequence
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
from numpy.random import Generator, default_rng
|
||||
@@ -15,6 +16,7 @@ from .financial import (
|
||||
net_present_value,
|
||||
payback_period,
|
||||
)
|
||||
from monitoring.metrics import observe_simulation
|
||||
|
||||
|
||||
class DistributionConfigError(ValueError):
|
||||
@@ -120,60 +122,79 @@ def run_monte_carlo(
|
||||
if pct < 0.0 or pct > 100.0:
|
||||
raise ValueError("percentiles must be within [0, 100]")
|
||||
|
||||
generator = rng or default_rng(config.seed)
|
||||
start_time = time.time()
|
||||
try:
|
||||
generator = rng or default_rng(config.seed)
|
||||
|
||||
metric_arrays: Dict[SimulationMetric, np.ndarray] = {
|
||||
metric: np.empty(config.iterations, dtype=float)
|
||||
for metric in config.metrics
|
||||
}
|
||||
metric_arrays: Dict[SimulationMetric, np.ndarray] = {
|
||||
metric: np.empty(config.iterations, dtype=float)
|
||||
for metric in config.metrics
|
||||
}
|
||||
|
||||
for idx in range(config.iterations):
|
||||
iteration_flows = [
|
||||
_realise_cash_flow(
|
||||
spec,
|
||||
generator,
|
||||
scenario_context=scenario_context,
|
||||
metadata=metadata,
|
||||
)
|
||||
for spec in cash_flows
|
||||
]
|
||||
for idx in range(config.iterations):
|
||||
iteration_flows = [
|
||||
_realise_cash_flow(
|
||||
spec,
|
||||
generator,
|
||||
scenario_context=scenario_context,
|
||||
metadata=metadata,
|
||||
)
|
||||
for spec in cash_flows
|
||||
]
|
||||
|
||||
if SimulationMetric.NPV in metric_arrays:
|
||||
metric_arrays[SimulationMetric.NPV][idx] = net_present_value(
|
||||
config.discount_rate,
|
||||
iteration_flows,
|
||||
residual_value=config.residual_value,
|
||||
residual_periods=config.residual_periods,
|
||||
compounds_per_year=config.compounds_per_year,
|
||||
)
|
||||
if SimulationMetric.IRR in metric_arrays:
|
||||
try:
|
||||
metric_arrays[SimulationMetric.IRR][idx] = internal_rate_of_return(
|
||||
if SimulationMetric.NPV in metric_arrays:
|
||||
metric_arrays[SimulationMetric.NPV][idx] = net_present_value(
|
||||
config.discount_rate,
|
||||
iteration_flows,
|
||||
residual_value=config.residual_value,
|
||||
residual_periods=config.residual_periods,
|
||||
compounds_per_year=config.compounds_per_year,
|
||||
)
|
||||
except (ValueError, ConvergenceError):
|
||||
metric_arrays[SimulationMetric.IRR][idx] = np.nan
|
||||
if SimulationMetric.PAYBACK in metric_arrays:
|
||||
try:
|
||||
metric_arrays[SimulationMetric.PAYBACK][idx] = payback_period(
|
||||
iteration_flows,
|
||||
compounds_per_year=config.compounds_per_year,
|
||||
)
|
||||
except (ValueError, PaybackNotReachedError):
|
||||
metric_arrays[SimulationMetric.PAYBACK][idx] = np.nan
|
||||
if SimulationMetric.IRR in metric_arrays:
|
||||
try:
|
||||
metric_arrays[SimulationMetric.IRR][idx] = internal_rate_of_return(
|
||||
iteration_flows,
|
||||
compounds_per_year=config.compounds_per_year,
|
||||
)
|
||||
except (ValueError, ConvergenceError):
|
||||
metric_arrays[SimulationMetric.IRR][idx] = np.nan
|
||||
if SimulationMetric.PAYBACK in metric_arrays:
|
||||
try:
|
||||
metric_arrays[SimulationMetric.PAYBACK][idx] = payback_period(
|
||||
iteration_flows,
|
||||
compounds_per_year=config.compounds_per_year,
|
||||
)
|
||||
except (ValueError, PaybackNotReachedError):
|
||||
metric_arrays[SimulationMetric.PAYBACK][idx] = np.nan
|
||||
|
||||
summaries = {
|
||||
metric: _summarise(metric_arrays[metric], config.percentiles)
|
||||
for metric in metric_arrays
|
||||
}
|
||||
summaries = {
|
||||
metric: _summarise(metric_arrays[metric], config.percentiles)
|
||||
for metric in metric_arrays
|
||||
}
|
||||
|
||||
samples = metric_arrays if config.return_samples else None
|
||||
return SimulationResult(
|
||||
iterations=config.iterations,
|
||||
summaries=summaries,
|
||||
samples=samples,
|
||||
)
|
||||
samples = metric_arrays if config.return_samples else None
|
||||
result = SimulationResult(
|
||||
iterations=config.iterations,
|
||||
summaries=summaries,
|
||||
samples=samples,
|
||||
)
|
||||
|
||||
# Record successful simulation
|
||||
duration = time.time() - start_time
|
||||
observe_simulation(
|
||||
status="success",
|
||||
duration_seconds=duration,
|
||||
)
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
# Record failed simulation
|
||||
duration = time.time() - start_time
|
||||
observe_simulation(
|
||||
status="error",
|
||||
duration_seconds=duration,
|
||||
)
|
||||
raise
|
||||
|
||||
|
||||
def _realise_cash_flow(
|
||||
|
||||
Reference in New Issue
Block a user