feat: Enhance project and scenario creation with monitoring metrics
- Added monitoring metrics for project creation success and error handling in `ProjectRepository`. - Implemented similar monitoring for scenario creation in `ScenarioRepository`. - Refactored `run_monte_carlo` function in `simulation.py` to include timing and success/error metrics. - Introduced new CSS styles for headers, alerts, and navigation buttons in `main.css` and `projects.css`. - Created a new JavaScript file for navigation logic to handle chevron buttons. - Updated HTML templates to include new navigation buttons and improved styling for buttons. - Added tests for reporting service and routes to ensure proper functionality and access control. - Removed unused imports and optimized existing test files for better clarity and performance.
This commit is contained in:
96
services/metrics.py
Normal file
96
services/metrics.py
Normal file
@@ -0,0 +1,96 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from config.database import get_db
|
||||
from models.performance_metric import PerformanceMetric
|
||||
|
||||
|
||||
class MetricsService:
|
||||
def __init__(self, db: Session):
|
||||
self.db = db
|
||||
|
||||
def store_metric(
|
||||
self,
|
||||
metric_name: str,
|
||||
value: float,
|
||||
labels: Optional[Dict[str, Any]] = None,
|
||||
endpoint: Optional[str] = None,
|
||||
method: Optional[str] = None,
|
||||
status_code: Optional[int] = None,
|
||||
duration_seconds: Optional[float] = None,
|
||||
) -> PerformanceMetric:
|
||||
"""Store a performance metric in the database."""
|
||||
metric = PerformanceMetric(
|
||||
timestamp=datetime.utcnow(),
|
||||
metric_name=metric_name,
|
||||
value=value,
|
||||
labels=json.dumps(labels) if labels else None,
|
||||
endpoint=endpoint,
|
||||
method=method,
|
||||
status_code=status_code,
|
||||
duration_seconds=duration_seconds,
|
||||
)
|
||||
self.db.add(metric)
|
||||
self.db.commit()
|
||||
self.db.refresh(metric)
|
||||
return metric
|
||||
|
||||
def get_metrics(
|
||||
self,
|
||||
metric_name: Optional[str] = None,
|
||||
start_time: Optional[datetime] = None,
|
||||
end_time: Optional[datetime] = None,
|
||||
limit: int = 100,
|
||||
) -> list[PerformanceMetric]:
|
||||
"""Retrieve stored metrics with optional filtering."""
|
||||
query = self.db.query(PerformanceMetric)
|
||||
|
||||
if metric_name:
|
||||
query = query.filter(PerformanceMetric.metric_name == metric_name)
|
||||
|
||||
if start_time:
|
||||
query = query.filter(PerformanceMetric.timestamp >= start_time)
|
||||
|
||||
if end_time:
|
||||
query = query.filter(PerformanceMetric.timestamp <= end_time)
|
||||
|
||||
return query.order_by(PerformanceMetric.timestamp.desc()).limit(limit).all()
|
||||
|
||||
def get_aggregated_metrics(
|
||||
self,
|
||||
metric_name: str,
|
||||
start_time: Optional[datetime] = None,
|
||||
end_time: Optional[datetime] = None,
|
||||
) -> Dict[str, Any]:
|
||||
"""Get aggregated statistics for a metric."""
|
||||
query = self.db.query(PerformanceMetric).filter(
|
||||
PerformanceMetric.metric_name == metric_name
|
||||
)
|
||||
|
||||
if start_time:
|
||||
query = query.filter(PerformanceMetric.timestamp >= start_time)
|
||||
|
||||
if end_time:
|
||||
query = query.filter(PerformanceMetric.timestamp <= end_time)
|
||||
|
||||
metrics = query.all()
|
||||
|
||||
if not metrics:
|
||||
return {"count": 0, "avg": 0, "min": 0, "max": 0}
|
||||
|
||||
values = [m.value for m in metrics]
|
||||
return {
|
||||
"count": len(values),
|
||||
"avg": sum(values) / len(values),
|
||||
"min": min(values),
|
||||
"max": max(values),
|
||||
}
|
||||
|
||||
|
||||
def get_metrics_service(db: Session) -> MetricsService:
|
||||
return MetricsService(db)
|
||||
@@ -5,7 +5,10 @@ from __future__ import annotations
|
||||
from dataclasses import dataclass, field
|
||||
from datetime import date
|
||||
import math
|
||||
from typing import Iterable, Mapping, Sequence
|
||||
from typing import Mapping, Sequence
|
||||
from urllib.parse import urlencode
|
||||
|
||||
from fastapi import Request
|
||||
|
||||
from models import FinancialCategory, Project, Scenario
|
||||
from services.financial import (
|
||||
@@ -177,13 +180,13 @@ class ScenarioReport:
|
||||
"project_id": self.scenario.project_id,
|
||||
"name": self.scenario.name,
|
||||
"description": self.scenario.description,
|
||||
"status": self.scenario.status.value,
|
||||
"status": self.scenario.status.value if hasattr(self.scenario.status, 'value') else self.scenario.status,
|
||||
"start_date": self.scenario.start_date,
|
||||
"end_date": self.scenario.end_date,
|
||||
"currency": self.scenario.currency,
|
||||
"primary_resource": self.scenario.primary_resource.value
|
||||
if self.scenario.primary_resource
|
||||
else None,
|
||||
if self.scenario.primary_resource and hasattr(self.scenario.primary_resource, 'value')
|
||||
else self.scenario.primary_resource,
|
||||
"discount_rate": _round_optional(self.deterministic.discount_rate, digits=4),
|
||||
"created_at": self.scenario.created_at,
|
||||
"updated_at": self.scenario.updated_at,
|
||||
@@ -374,13 +377,12 @@ class ReportingService:
|
||||
}
|
||||
|
||||
def _load_scenarios(self, project_id: int, filters: ReportFilters) -> list[Scenario]:
|
||||
repo = self._require_scenario_repo()
|
||||
scenarios = repo.list_for_project(project_id, with_children=True)
|
||||
scenarios = self._uow.scenarios.list_for_project(
|
||||
project_id, with_children=True)
|
||||
return [scenario for scenario in scenarios if filters.matches(scenario)]
|
||||
|
||||
def _reload_scenario(self, scenario_id: int) -> Scenario:
|
||||
repo = self._require_scenario_repo()
|
||||
return repo.get(scenario_id, with_children=True)
|
||||
return self._uow.scenarios.get(scenario_id, with_children=True)
|
||||
|
||||
def _build_scenario_report(
|
||||
self,
|
||||
@@ -469,10 +471,147 @@ class ReportingService:
|
||||
)
|
||||
return comparisons
|
||||
|
||||
def _require_scenario_repo(self):
|
||||
if not self._uow.scenarios:
|
||||
raise RuntimeError("Scenario repository not initialised")
|
||||
return self._uow.scenarios
|
||||
def build_project_summary_context(
|
||||
self,
|
||||
project: Project,
|
||||
filters: ReportFilters,
|
||||
include: IncludeOptions,
|
||||
iterations: int,
|
||||
percentiles: tuple[float, ...],
|
||||
request: Request,
|
||||
) -> dict[str, object]:
|
||||
"""Build template context for project summary page."""
|
||||
scenarios = self._load_scenarios(project.id, filters)
|
||||
reports = [
|
||||
self._build_scenario_report(
|
||||
scenario,
|
||||
include_distribution=include.distribution,
|
||||
include_samples=include.samples,
|
||||
iterations=iterations,
|
||||
percentiles=percentiles,
|
||||
)
|
||||
for scenario in scenarios
|
||||
]
|
||||
aggregates = self._aggregate_project(reports)
|
||||
|
||||
return {
|
||||
"request": request,
|
||||
"project": _project_payload(project),
|
||||
"scenario_count": len(reports),
|
||||
"aggregates": aggregates.to_dict(),
|
||||
"scenarios": [report.to_dict() for report in reports],
|
||||
"filters": filters.to_dict(),
|
||||
"include_options": include,
|
||||
"iterations": iterations,
|
||||
"percentiles": percentiles,
|
||||
"title": f"Project Summary · {project.name}",
|
||||
"subtitle": "Aggregated financial and simulation insights across scenarios.",
|
||||
"actions": [
|
||||
{
|
||||
"href": request.url_for(
|
||||
"reports.project_summary",
|
||||
project_id=project.id,
|
||||
),
|
||||
"label": "Download JSON",
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
def build_scenario_comparison_context(
|
||||
self,
|
||||
project: Project,
|
||||
scenarios: Sequence[Scenario],
|
||||
include: IncludeOptions,
|
||||
iterations: int,
|
||||
percentiles: tuple[float, ...],
|
||||
request: Request,
|
||||
) -> dict[str, object]:
|
||||
"""Build template context for scenario comparison page."""
|
||||
reports = [
|
||||
self._build_scenario_report(
|
||||
self._reload_scenario(scenario.id),
|
||||
include_distribution=include.distribution,
|
||||
include_samples=include.samples,
|
||||
iterations=iterations,
|
||||
percentiles=percentiles,
|
||||
)
|
||||
for scenario in scenarios
|
||||
]
|
||||
comparison = {
|
||||
metric: data.to_dict()
|
||||
for metric, data in self._build_comparisons(reports).items()
|
||||
}
|
||||
|
||||
comparison_json_url = request.url_for(
|
||||
"reports.project_scenario_comparison",
|
||||
project_id=project.id,
|
||||
)
|
||||
scenario_ids = [str(s.id) for s in scenarios]
|
||||
comparison_query = urlencode(
|
||||
[("scenario_ids", str(identifier)) for identifier in scenario_ids]
|
||||
)
|
||||
if comparison_query:
|
||||
comparison_json_url = f"{comparison_json_url}?{comparison_query}"
|
||||
|
||||
return {
|
||||
"request": request,
|
||||
"project": _project_payload(project),
|
||||
"scenarios": [report.to_dict() for report in reports],
|
||||
"comparison": comparison,
|
||||
"include_options": include,
|
||||
"iterations": iterations,
|
||||
"percentiles": percentiles,
|
||||
"title": f"Scenario Comparison · {project.name}",
|
||||
"subtitle": "Evaluate deterministic metrics and Monte Carlo trends side by side.",
|
||||
"actions": [
|
||||
{
|
||||
"href": comparison_json_url,
|
||||
"label": "Download JSON",
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
def build_scenario_distribution_context(
|
||||
self,
|
||||
scenario: Scenario,
|
||||
include: IncludeOptions,
|
||||
iterations: int,
|
||||
percentiles: tuple[float, ...],
|
||||
request: Request,
|
||||
) -> dict[str, object]:
|
||||
"""Build template context for scenario distribution page."""
|
||||
report = self._build_scenario_report(
|
||||
self._reload_scenario(scenario.id),
|
||||
include_distribution=True,
|
||||
include_samples=include.samples,
|
||||
iterations=iterations,
|
||||
percentiles=percentiles,
|
||||
)
|
||||
|
||||
return {
|
||||
"request": request,
|
||||
"scenario": report.to_dict()["scenario"],
|
||||
"summary": report.totals.to_dict(),
|
||||
"metrics": report.deterministic.to_dict(),
|
||||
"monte_carlo": (
|
||||
report.monte_carlo.to_dict() if report.monte_carlo else {
|
||||
"available": False}
|
||||
),
|
||||
"include_options": include,
|
||||
"iterations": iterations,
|
||||
"percentiles": percentiles,
|
||||
"title": f"Scenario Distribution · {scenario.name}",
|
||||
"subtitle": "Deterministic and simulated distributions for a single scenario.",
|
||||
"actions": [
|
||||
{
|
||||
"href": request.url_for(
|
||||
"reports.scenario_distribution",
|
||||
scenario_id=scenario.id,
|
||||
),
|
||||
"label": "Download JSON",
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
def _build_cash_flows(scenario: Scenario) -> tuple[list[CashFlow], ScenarioFinancialTotals]:
|
||||
|
||||
@@ -15,7 +15,6 @@ from models import (
|
||||
PricingImpuritySettings,
|
||||
PricingMetalSettings,
|
||||
PricingSettings,
|
||||
ResourceType,
|
||||
Role,
|
||||
Scenario,
|
||||
ScenarioStatus,
|
||||
@@ -88,8 +87,12 @@ class ProjectRepository:
|
||||
try:
|
||||
self.session.flush()
|
||||
except IntegrityError as exc: # pragma: no cover - reliance on DB constraints
|
||||
from monitoring.metrics import observe_project_operation
|
||||
observe_project_operation("create", "error")
|
||||
raise EntityConflictError(
|
||||
"Project violates uniqueness constraints") from exc
|
||||
from monitoring.metrics import observe_project_operation
|
||||
observe_project_operation("create", "success")
|
||||
return project
|
||||
|
||||
def find_by_names(self, names: Iterable[str]) -> Mapping[str, Project]:
|
||||
@@ -251,7 +254,11 @@ class ScenarioRepository:
|
||||
try:
|
||||
self.session.flush()
|
||||
except IntegrityError as exc: # pragma: no cover
|
||||
from monitoring.metrics import observe_scenario_operation
|
||||
observe_scenario_operation("create", "error")
|
||||
raise EntityConflictError("Scenario violates constraints") from exc
|
||||
from monitoring.metrics import observe_scenario_operation
|
||||
observe_scenario_operation("create", "success")
|
||||
return scenario
|
||||
|
||||
def find_by_project_and_names(
|
||||
|
||||
@@ -3,7 +3,7 @@ from __future__ import annotations
|
||||
"""Scenario evaluation services including pricing integration."""
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Iterable, Mapping
|
||||
from typing import Iterable
|
||||
|
||||
from models.scenario import Scenario
|
||||
from services.pricing import (
|
||||
|
||||
@@ -2,7 +2,8 @@ from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
from typing import Any, Dict, Iterable, Mapping, Sequence
|
||||
from typing import Any, Dict, Mapping, Sequence
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
from numpy.random import Generator, default_rng
|
||||
@@ -15,6 +16,7 @@ from .financial import (
|
||||
net_present_value,
|
||||
payback_period,
|
||||
)
|
||||
from monitoring.metrics import observe_simulation
|
||||
|
||||
|
||||
class DistributionConfigError(ValueError):
|
||||
@@ -120,60 +122,79 @@ def run_monte_carlo(
|
||||
if pct < 0.0 or pct > 100.0:
|
||||
raise ValueError("percentiles must be within [0, 100]")
|
||||
|
||||
generator = rng or default_rng(config.seed)
|
||||
start_time = time.time()
|
||||
try:
|
||||
generator = rng or default_rng(config.seed)
|
||||
|
||||
metric_arrays: Dict[SimulationMetric, np.ndarray] = {
|
||||
metric: np.empty(config.iterations, dtype=float)
|
||||
for metric in config.metrics
|
||||
}
|
||||
metric_arrays: Dict[SimulationMetric, np.ndarray] = {
|
||||
metric: np.empty(config.iterations, dtype=float)
|
||||
for metric in config.metrics
|
||||
}
|
||||
|
||||
for idx in range(config.iterations):
|
||||
iteration_flows = [
|
||||
_realise_cash_flow(
|
||||
spec,
|
||||
generator,
|
||||
scenario_context=scenario_context,
|
||||
metadata=metadata,
|
||||
)
|
||||
for spec in cash_flows
|
||||
]
|
||||
for idx in range(config.iterations):
|
||||
iteration_flows = [
|
||||
_realise_cash_flow(
|
||||
spec,
|
||||
generator,
|
||||
scenario_context=scenario_context,
|
||||
metadata=metadata,
|
||||
)
|
||||
for spec in cash_flows
|
||||
]
|
||||
|
||||
if SimulationMetric.NPV in metric_arrays:
|
||||
metric_arrays[SimulationMetric.NPV][idx] = net_present_value(
|
||||
config.discount_rate,
|
||||
iteration_flows,
|
||||
residual_value=config.residual_value,
|
||||
residual_periods=config.residual_periods,
|
||||
compounds_per_year=config.compounds_per_year,
|
||||
)
|
||||
if SimulationMetric.IRR in metric_arrays:
|
||||
try:
|
||||
metric_arrays[SimulationMetric.IRR][idx] = internal_rate_of_return(
|
||||
if SimulationMetric.NPV in metric_arrays:
|
||||
metric_arrays[SimulationMetric.NPV][idx] = net_present_value(
|
||||
config.discount_rate,
|
||||
iteration_flows,
|
||||
residual_value=config.residual_value,
|
||||
residual_periods=config.residual_periods,
|
||||
compounds_per_year=config.compounds_per_year,
|
||||
)
|
||||
except (ValueError, ConvergenceError):
|
||||
metric_arrays[SimulationMetric.IRR][idx] = np.nan
|
||||
if SimulationMetric.PAYBACK in metric_arrays:
|
||||
try:
|
||||
metric_arrays[SimulationMetric.PAYBACK][idx] = payback_period(
|
||||
iteration_flows,
|
||||
compounds_per_year=config.compounds_per_year,
|
||||
)
|
||||
except (ValueError, PaybackNotReachedError):
|
||||
metric_arrays[SimulationMetric.PAYBACK][idx] = np.nan
|
||||
if SimulationMetric.IRR in metric_arrays:
|
||||
try:
|
||||
metric_arrays[SimulationMetric.IRR][idx] = internal_rate_of_return(
|
||||
iteration_flows,
|
||||
compounds_per_year=config.compounds_per_year,
|
||||
)
|
||||
except (ValueError, ConvergenceError):
|
||||
metric_arrays[SimulationMetric.IRR][idx] = np.nan
|
||||
if SimulationMetric.PAYBACK in metric_arrays:
|
||||
try:
|
||||
metric_arrays[SimulationMetric.PAYBACK][idx] = payback_period(
|
||||
iteration_flows,
|
||||
compounds_per_year=config.compounds_per_year,
|
||||
)
|
||||
except (ValueError, PaybackNotReachedError):
|
||||
metric_arrays[SimulationMetric.PAYBACK][idx] = np.nan
|
||||
|
||||
summaries = {
|
||||
metric: _summarise(metric_arrays[metric], config.percentiles)
|
||||
for metric in metric_arrays
|
||||
}
|
||||
summaries = {
|
||||
metric: _summarise(metric_arrays[metric], config.percentiles)
|
||||
for metric in metric_arrays
|
||||
}
|
||||
|
||||
samples = metric_arrays if config.return_samples else None
|
||||
return SimulationResult(
|
||||
iterations=config.iterations,
|
||||
summaries=summaries,
|
||||
samples=samples,
|
||||
)
|
||||
samples = metric_arrays if config.return_samples else None
|
||||
result = SimulationResult(
|
||||
iterations=config.iterations,
|
||||
summaries=summaries,
|
||||
samples=samples,
|
||||
)
|
||||
|
||||
# Record successful simulation
|
||||
duration = time.time() - start_time
|
||||
observe_simulation(
|
||||
status="success",
|
||||
duration_seconds=duration,
|
||||
)
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
# Record failed simulation
|
||||
duration = time.time() - start_time
|
||||
observe_simulation(
|
||||
status="error",
|
||||
duration_seconds=duration,
|
||||
)
|
||||
raise
|
||||
|
||||
|
||||
def _realise_cash_flow(
|
||||
|
||||
Reference in New Issue
Block a user