feat: Add NPV comparison and distribution charts to reporting
Some checks failed
CI / lint (push) Successful in 15s
CI / build (push) Has been skipped
CI / test (push) Failing after 17s
CI / deploy (push) Has been skipped

- Implemented NPV comparison chart generation using Plotly in ReportingService.
- Added distribution histogram for Monte Carlo results.
- Updated reporting templates to include new charts and improved layout.
- Created new settings and currencies management pages.
- Enhanced sidebar navigation with dynamic URL handling.
- Improved CSS styles for chart containers and overall layout.
- Added new simulation and theme settings pages with placeholders for future features.
This commit is contained in:
2025-11-12 19:39:27 +01:00
parent ad306bd0aa
commit acf6f50bbd
15 changed files with 819 additions and 435 deletions

View File

@@ -8,6 +8,9 @@ import math
from typing import Mapping, Sequence
from urllib.parse import urlencode
import plotly.graph_objects as go
import plotly.io as pio
from fastapi import Request
from models import FinancialCategory, Project, Scenario
@@ -515,6 +518,7 @@ class ReportingService:
"label": "Download JSON",
}
],
"chart_data": self._generate_npv_comparison_chart(reports),
}
def build_scenario_comparison_context(
@@ -611,8 +615,64 @@ class ReportingService:
"label": "Download JSON",
}
],
"chart_data": self._generate_distribution_histogram(report.monte_carlo) if report.monte_carlo else "{}",
}
def _generate_npv_comparison_chart(self, reports: Sequence[ScenarioReport]) -> str:
"""Generate Plotly chart JSON for NPV comparison across scenarios."""
scenario_names = []
npv_values = []
for report in reports:
scenario_names.append(report.scenario.name)
npv_values.append(report.deterministic.npv or 0)
fig = go.Figure(data=[
go.Bar(
x=scenario_names,
y=npv_values,
name='NPV',
marker_color='lightblue'
)
])
fig.update_layout(
title="NPV Comparison Across Scenarios",
xaxis_title="Scenario",
yaxis_title="NPV",
showlegend=False
)
return pio.to_json(fig) or "{}"
def _generate_distribution_histogram(self, monte_carlo: ScenarioMonteCarloResult) -> str:
"""Generate Plotly histogram for Monte Carlo distribution."""
if not monte_carlo.available or not monte_carlo.result or not monte_carlo.result.samples:
return "{}"
# Get NPV samples
npv_samples = monte_carlo.result.samples.get(SimulationMetric.NPV, [])
if len(npv_samples) == 0:
return "{}"
fig = go.Figure(data=[
go.Histogram(
x=npv_samples,
nbinsx=50,
name='NPV Distribution',
marker_color='lightgreen'
)
])
fig.update_layout(
title="Monte Carlo NPV Distribution",
xaxis_title="NPV",
yaxis_title="Frequency",
showlegend=False
)
return pio.to_json(fig) or "{}"
def _build_cash_flows(scenario: Scenario) -> tuple[list[CashFlow], ScenarioFinancialTotals]:
cash_flows: list[CashFlow] = []