Add initial implementation of CalMiner with project structure, environment setup, and core features

- Create .env.example for environment variables
- Update README with project structure and development setup instructions
- Implement FastAPI application with API routes for scenarios and parameters
- Add database models for scenarios, parameters, and simulation results
- Introduce validation middleware for JSON requests
- Create services for running simulations and generating reports
- Add testing strategy and directory structure in documentation
This commit is contained in:
2025-10-20 18:37:57 +02:00
parent cb9749010f
commit 39c45e720c
20 changed files with 604 additions and 64 deletions

4
.env.example Normal file
View File

@@ -0,0 +1,4 @@
# Example environment variables for CalMiner
# PostgreSQL database connection URL
database_url=postgresql://<user>:<password>@localhost:5432/calminer

View File

@@ -24,29 +24,67 @@ A range of features are implemented to support these functionalities.
The architecture is documented in [docs/architecture.md](docs/architecture.md). The architecture is documented in [docs/architecture.md](docs/architecture.md).
## Project Structure
The project is organized into several key directories:
- `models/`: Contains SQLAlchemy models representing database tables.
- `routes/`: Defines FastAPI routes for API endpoints.
- `services/`: Business logic and service layer.
- `components/`: Frontend components (to be defined).
- `config/`: Configuration files and settings.
- `middleware/`: Custom middleware for request/response processing.
- `tests/`: Unit and integration tests.
- `templates/`: HTML templates (if applicable).
- `docs/`: Documentation files.
Key files include:
- `main.py`: FastAPI application entry point.
- `.env`: Environment variables for configuration.
- `requirements.txt`: Python dependencies.
## Development ## Development
The development setup instructions are provided in [docs/development_setup.md](docs/development_setup.md). The development setup instructions are provided in [docs/development_setup.md](docs/development_setup.md).
To get started locally:
```powershell
# Clone the repository
git clone https://git.allucanget.biz/allucanget/calminer.git
cd calminer
# Create and activate a virtual environment
python -m venv .venv
.\.venv\Scripts\Activate.ps1
# Install dependencies
pip install -r requirements.txt
# Start the development server
uvicorn main:app --reload
```
## Testing ## Testing
Testing guidelines and best practices are outlined in [docs/testing.md](docs/testing.md). Testing guidelines and best practices are outlined in [docs/testing.md](docs/testing.md).
## Database Objects ## Database Objects
The database is composed of several tables that store different types of information. All tables are under schema `bricsium_platform`. See `structure.sql` for full DDL. Here are some of the most important ones: The database is composed of several tables that store different types of information.
- **CAPEX** — `bricsium_platform.capex`: Stores data on capital expenditures. - **CAPEX** — `capex`: Stores data on capital expenditures.
- **OPEX** — `bricsium_platform.opex`: Contains information on operational expenditures. - **OPEX** — `opex`: Contains information on operational expenditures.
- **Chemical consumption** — `bricsium_platform.chemical_consumption`: Tracks the consumption of chemical reagents. - **Chemical consumption** — `chemical_consumption`: Tracks the consumption of chemical reagents.
- **Fuel consumption** — `bricsium_platform.fuel_consumption`: Records the amount of fuel consumed. - **Fuel consumption** — `fuel_consumption`: Records the amount of fuel consumed.
- **Water consumption** — `bricsium_platform.water_consumption`: Monitors the use of water. - **Water consumption** — `water_consumption`: Monitors the use of water.
- **Scrap consumption** — `bricsium_platform.scrap_consumption`: Tracks the consumption of scrap materials. - **Scrap consumption** — `scrap_consumption`: Tracks the consumption of scrap materials.
- **Production output** — `bricsium_platform.production_output`: Stores data on production output, such as tons produced and recovery rates. - **Production output** — `production_output`: Stores data on production output, such as tons produced and recovery rates.
- **Equipment operation** — `bricsium_platform.equipment_operation`: Contains operational data for each piece of equipment. - **Equipment operation** — `equipment_operation`: Contains operational data for each piece of equipment.
- **Ore batch** — `bricsium_platform.ore_batch`: Stores information on ore batches, including their grade and other characteristics. - **Ore batch** — `ore_batch`: Stores information on ore batches, including their grade and other characteristics.
- **Exchange rate** — `bricsium_platform.exchange_rate`: Contains currency exchange rates. - **Exchange rate** — `exchange_rate`: Contains currency exchange rates.
- **Simulation result** — `bricsium_platform.simulation_result`: Stores the results of the Monte Carlo simulations. - **Simulation result** — `simulation_result`: Stores the results of the Monte Carlo simulations.
## Static Parameters ## Static Parameters

25
components/Dashboard.html Normal file
View File

@@ -0,0 +1,25 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CalMiner Dashboard</title>
</head>
<body>
<h1>Simulation Results Dashboard</h1>
<div id="report-summary"></div>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script>
// TODO: fetch summary report and render charts
async function loadReport() {
const response = await fetch('/api/reporting/summary', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify([])
});
const data = await response.json();
document.getElementById('report-summary').innerText = JSON.stringify(data);
}
loadReport();
</script>
</body>
</html>

14
config/database.py Normal file
View File

@@ -0,0 +1,14 @@
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
import os
from dotenv import load_dotenv
load_dotenv()
DATABASE_URL = os.environ.get("DATABASE_URL")
if not DATABASE_URL:
raise RuntimeError("DATABASE_URL environment variable is not set")
engine = create_engine(DATABASE_URL, echo=True, future=True)
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
Base = declarative_base()

View File

@@ -8,8 +8,10 @@ CalMiner is a web application for planning mining projects, estimating costs, re
- **Frontend**: Web interface for user interaction (to be defined). - **Frontend**: Web interface for user interaction (to be defined).
- **Backend**: Python API server (e.g., FastAPI) handling business logic. - **Backend**: Python API server (e.g., FastAPI) handling business logic.
- **Database**: PostgreSQL with schema `bricsium_platform` (see `structure.sql`). - **Database**: PostgreSQL.
- **Configuration**: Environment variables and settings loaded via `python-dotenv` and stored in `config/` directory.
- **Simulation Engine**: Python-based Monte Carlo runs and stochastic calculations. - **Simulation Engine**: Python-based Monte Carlo runs and stochastic calculations.
- **API Routes**: FastAPI routers defined in `routes/` for scenarios, simulations, consumptions, and reporting endpoints.
## Data Flow ## Data Flow
@@ -22,8 +24,15 @@ CalMiner is a web application for planning mining projects, estimating costs, re
## Database Architecture ## Database Architecture
- Schema: `bricsium_platform` - Schema: `bricsium_platform`
- Key tables: Scenarios, parameters, consumptions, outputs, simulations. - Key tables include:
- Relationships: Foreign keys link scenarios to parameters, consumptions, and results.
- `scenario` (scenario metadata and parameters)
- `capex`, `opex` (capital and operational expenditures)
- `chemical_consumption`, `fuel_consumption`, `water_consumption`, `scrap_consumption`
- `production_output`, `equipment_operation`, `ore_batch`
- `exchange_rate`, `simulation_result`
- Relationships: Foreign keys link scenarios to parameters, consumptions, and simulation results.
## Next Steps ## Next Steps

View File

@@ -6,41 +6,66 @@
- PostgreSQL (version 13+) - PostgreSQL (version 13+)
- Git - Git
## Clone and Project Setup
```powershell
# Clone the repository
git clone https://git.allucanget.biz/allucanget/calminer.git
cd calminer
```
## Virtual Environment
```powershell
# Create and activate a virtual environment
python -m venv .venv
.\.venv\Scripts\Activate.ps1
```
## Install Dependencies
```powershell
pip install -r requirements.txt
```
## Database Setup ## Database Setup
1. Install PostgreSQL and create a database named `calminer`. 1. Create database user:
2. Create schema `bricsium_platform`:
```sql ```sql
CREATE SCHEMA bricsium_platform; CREATE USER calminer_user WITH PASSWORD 'your_password';
``` ```
3. Load the schema from `structure.sql`: 2. Create database:
```bash ```sql
psql -d calminer -f structure.sql CREATE DATABASE calminer;
``` ```
## Backend Setup ## Environment Variables
1. Clone the repo. 1. Copy `.env.example` to `.env` at project root.
2. Create a virtual environment: `python -m venv .venv` 2. Edit `.env` to set database connection string:
3. Activate it: `.venv\Scripts\activate` (Windows) or `source .venv/bin/activate` (Linux/Mac)
4. Install dependencies: `pip install -r requirements.txt`
5. Set up environment variables (e.g., DB connection string in .env).
6. Run migrations if any.
7. Start server: `python main.py` or `uvicorn main:app --reload`
## Frontend Setup ```dotenv
DATABASE_URL=postgresql://<user>:<password>@localhost:5432/calminer
```
(TBD - add when implemented) 3. The application uses `python-dotenv` to load these variables.
## Running Locally ## Running the Application
- Backend: `uvicorn main:app --reload` ```powershell
- Frontend: (TBD) # Start the FastAPI server
uvicorn main:app --reload
```
## Testing ## Testing
- Run tests: `pytest` ```powershell
pytest
```
## Frontend Setup
(TBD - add when frontend implemented)

View File

@@ -1,43 +1,153 @@
# Implementation Plan # Implementation Plan
## Feature: Scenario Creation and Management This document outlines the MVP features and implementation steps for CalMiner.
### Scenario Implementation Steps Refer to the following for context alignment:
1. Create `models/scenario.py` for DB interactions. - System architecture: [docs/architecture.md](architecture.md)
2. Implement API endpoints in `routes/scenarios.py`: GET, POST, PUT, DELETE. - Development setup: [docs/development_setup.md](development_setup.md)
3. Add frontend component `components/ScenarioForm.html` for CRUD.
4. Update `README.md` with API docs.
## Feature: Parameter Input and Validation ## Project Setup
### Parameter Implementation Steps 1. Connect to PostgreSQL database with schema `calminer`.
2. Create and activate a virtual environment and install dependencies via `requirements.txt`.
3. Define environment variables in `.env`, including `DATABASE_URL`.
4. Configure FastAPI entrypoint in `main.py` to include routers.
1. Define parameter schemas in `models/parameters.py`. ## Feature: Scenario Management
2. Create validation middleware in `middleware/validation.py`.
3. Build input form in `components/ParameterInput.html`.
4. Integrate with scenario management.
## Feature: Monte Carlo Simulation Run ### Implementation Steps
### Simulation Implementation Steps 1. Create `models/scenario.py` for scenario CRUD.
2. Implement API endpoints in `routes/scenarios.py` (GET, POST, PUT, DELETE).
3. Write unit tests in `tests/unit/test_scenario.py`.
4. Build UI component `components/ScenarioForm.html`.
1. Implement simulation logic in `services/simulation.py`. ## Feature: Process Parameters
2. Add endpoint `POST /api/simulations/run`.
3. Store results in `models/simulation_result.py`.
4. Add progress tracking UI.
## Feature: Basic Reporting ### Implementation Steps
### Reporting Implementation Steps 1. Create `models/parameters.py` for process parameters.
2. Implement Pydantic schemas in `routes/parameters.py`.
3. Add validation middleware in `middleware/validation.py`.
4. Write unit tests in `tests/unit/test_parameter.py`.
5. Build UI component `components/ParameterInput.html`.
1. Create report service `services/reporting.py`. ## Feature: Stochastic Variables
2. Build dashboard component `components/Dashboard.html`.
3. Fetch data from simulation results.
4. Add charts using Chart.js.
## Next Steps ### Implementation Steps
- Assign issues in GitHub. 1. Create `models/distribution.py` for variable distributions.
- Estimate effort for each step. 2. Implement API routes in `routes/distributions.py`.
- Start with backend models. 3. Write Pydantic schemas and validations.
4. Write unit tests in `tests/unit/test_distribution.py`.
5. Build UI component `components/DistributionEditor.html`.
## Feature: Cost Tracking
### Implementation Steps
1. Create `models/capex.py` and `models/opex.py`.
2. Implement API routes in `routes/costs.py`.
3. Write Pydantic schemas for CAPEX/OPEX.
4. Write unit tests in `tests/unit/test_costs.py`.
5. Build UI component `components/CostForm.html`.
## Feature: Consumption Tracking
### Implementation Steps
1. Create models for consumption: `chemical_consumption.py`, `fuel_consumption.py`, `water_consumption.py`, `scrap_consumption.py`.
2. Implement API routes in `routes/consumption.py`.
3. Write Pydantic schemas for consumption data.
4. Write unit tests in `tests/unit/test_consumption.py`.
5. Build UI component `components/ConsumptionDashboard.html`.
## Feature: Production Output
### Implementation Steps
1. Create `models/production_output.py`.
2. Implement API routes in `routes/production.py`.
3. Write Pydantic schemas for production output.
4. Write unit tests in `tests/unit/test_production.py`.
5. Build UI component `components/ProductionChart.html`.
## Feature: Equipment Management
### Implementation Steps
1. Create `models/equipment.py` for equipment data.
2. Implement API routes in `routes/equipment.py`.
3. Write Pydantic schemas for equipment.
4. Write unit tests in `tests/unit/test_equipment.py`.
5. Build UI component `components/EquipmentList.html`.
## Feature: Maintenance Logging
### Implementation Steps
1. Create `models/maintenance.py` for maintenance events.
2. Implement API routes in `routes/maintenance.py`.
3. Write Pydantic schemas for maintenance logs.
4. Write unit tests in `tests/unit/test_maintenance.py`.
5. Build UI component `components/MaintenanceLog.html`.
## Feature: Monte Carlo Simulation Engine
### Implementation Steps
1. Implement Monte Carlo logic in `services/simulation.py`.
2. Persist results in `models/simulation_result.py`.
3. Expose endpoint in `routes/simulations.py`.
4. Write integration tests in `tests/unit/test_simulation.py`.
5. Build UI component `components/SimulationRunner.html`.
## Feature: Reporting / Dashboard
### Implementation Steps
1. Implement report calculations in `services/reporting.py`.
2. Add detailed and summary endpoints in `routes/reporting.py`.
3. Write unit tests in `tests/unit/test_reporting.py`.
4. Enhance UI in `components/Dashboard.html` with charts.
## MVP Feature Analysis (summary)
Goal: Identify core MVP features, acceptance criteria, and quick estimates.
Features:
- Scenario Management
- Acceptance: create/read/update/delete scenarios; persist to DB; API coverage with tests.
- Estimate: 3-5 days (backend + minimal UI).
- Parameter Input & Validation
- Acceptance: define parameter schemas, validate inputs, surface errors to API/UI.
- Estimate: 2-3 days.
- Monte Carlo Simulation Engine
- Acceptance: run parameterised simulations, store results, ability to rerun with different seeds, basic progress reporting.
- Estimate: 1-2 weeks (core engine + persistence).
- Reporting / Dashboard
- Acceptance: display simulation outputs (NPV, IRR distributions), basic charts, export CSV.
- Estimate: 4-7 days.
Edge cases to consider:
- Large simulation runs (memory / timeouts) — use streaming, chunking, or background workers.
- DB migration and schema versioning.
- Authentication/authorization for scenario access.
Next actionable items:
1. Break Scenario Management into sub-issues (models, routes, tests, simple UI).
2. Scaffold Parameter Input & Validation (models/parameters.py, middleware, routes, tests).
3. Prototype the simulation engine with a small deterministic runner and unit tests.
4. Scaffold Monte Carlo Simulation endpoints (`services/simulation.py`, `routes/simulations.py`, tests).
5. Scaffold Reporting endpoints (`services/reporting.py`, `routes/reporting.py`, front-end Dashboard, tests).
6. Add CI job for tests and coverage.

View File

@@ -27,3 +27,48 @@ CalMiner will use a combination of unit, integration, and end-to-end tests to en
- Unit: `pytest tests/unit/` - Unit: `pytest tests/unit/`
- Integration: `pytest tests/integration/` - Integration: `pytest tests/integration/`
- All: `pytest` - All: `pytest`
## Test Directory Structure
Organize tests under the `tests/` directory mirroring the application structure:
```bash
tests/
unit/
test_<module>.py
integration/
test_<endpoint>.py
fixtures/
conftest.py
```
## Writing Tests
- Name tests with the `test_` prefix.
- Group related tests in classes or modules.
- Use descriptive assertion messages.
## Fixtures and Test Data
- Define reusable fixtures in `tests/fixtures/conftest.py`.
- Use temporary in-memory databases or isolated schemas for DB tests.
- Load sample data via fixtures for consistent test environments.
## Mocking and Dependency Injection
- Use `unittest.mock` to mock external dependencies.
- Inject dependencies via function parameters or FastAPI's dependency overrides in tests.
## Code Coverage
- Install `pytest-cov` to generate coverage reports.
- Run with coverage: `pytest --cov=calminer --cov-report=html`.
- Ensure coverage meets the 80% threshold.
## CI Integration
- Configure GitHub Actions workflow in `.github/workflows/ci.yml` to:
- Install dependencies
- Run `pytest` with coverage
- Fail on coverage <80%
- Upload coverage artifact

17
main.py Normal file
View File

@@ -0,0 +1,17 @@
from routes.parameters import router as parameters_router
from fastapi import FastAPI
from fastapi.middleware import Middleware
from middleware.validation import validate_json
from config.database import Base, engine
from routes.scenarios import router as scenarios_router
# Initialize database schema
Base.metadata.create_all(bind=engine)
app = FastAPI()
# Register validation middleware
app.middleware("http")(validate_json)
# Include API routers
app.include_router(scenarios_router)
app.include_router(parameters_router)

13
middleware/validation.py Normal file
View File

@@ -0,0 +1,13 @@
from fastapi import Request, HTTPException
async def validate_json(request: Request, call_next):
# Only validate JSON for requests with a body
if request.method in ("POST", "PUT", "PATCH"):
try:
# attempt to parse json body
await request.json()
except Exception:
raise HTTPException(status_code=400, detail="Invalid JSON payload")
response = await call_next(request)
return response

17
models/parameters.py Normal file
View File

@@ -0,0 +1,17 @@
from sqlalchemy import Column, Integer, String, Float, ForeignKey
from sqlalchemy.orm import relationship
from config.database import Base
class Parameter(Base):
__tablename__ = "parameter"
id = Column(Integer, primary_key=True, index=True)
scenario_id = Column(Integer, ForeignKey("scenario.id"), nullable=False)
name = Column(String, nullable=False)
value = Column(Float, nullable=False)
scenario = relationship("Scenario", back_populates="parameters")
def __repr__(self):
return f"<Parameter id={self.id} name={self.name} value={self.value}>"

20
models/scenario.py Normal file
View File

@@ -0,0 +1,20 @@
from sqlalchemy import Column, Integer, String, DateTime, func
from sqlalchemy.orm import relationship
from config.database import Base
class Scenario(Base):
__tablename__ = "scenario"
id = Column(Integer, primary_key=True, index=True)
name = Column(String, unique=True, nullable=False)
description = Column(String)
created_at = Column(DateTime(timezone=True), server_default=func.now())
updated_at = Column(DateTime(timezone=True), onupdate=func.now())
parameters = relationship("Parameter", back_populates="scenario")
simulation_results = relationship(
"SimulationResult", back_populates="scenario")
# relationships can be defined later
def __repr__(self):
return f"<Scenario id={self.id} name={self.name}>"

View File

@@ -0,0 +1,14 @@
from sqlalchemy import Column, Integer, Float, ForeignKey
from sqlalchemy.orm import relationship
from config.database import Base
class SimulationResult(Base):
__tablename__ = "simulation_result"
id = Column(Integer, primary_key=True, index=True)
scenario_id = Column(Integer, ForeignKey("scenario.id"), nullable=False)
iteration = Column(Integer, nullable=False)
result = Column(Float, nullable=False)
scenario = relationship("Scenario", back_populates="simulation_results")

7
requirements.txt Normal file
View File

@@ -0,0 +1,7 @@
fastapi
uvicorn
sqlalchemy
psycopg2-binary
python-dotenv
pytest
pytest-cov

50
routes/parameters.py Normal file
View File

@@ -0,0 +1,50 @@
from fastapi import APIRouter, Depends, HTTPException
from sqlalchemy.orm import Session
from config.database import SessionLocal
from models.parameters import Parameter
from models.scenario import Scenario
from pydantic import BaseModel
from typing import Optional, List
router = APIRouter(prefix="/api/parameters", tags=["parameters"])
class ParameterCreate(BaseModel):
scenario_id: int
name: str
value: float
class ParameterRead(ParameterCreate):
id: int
class Config:
orm_mode = True
# Dependency
def get_db():
db = SessionLocal()
try:
yield db
finally:
db.close()
@router.post("/", response_model=ParameterRead)
def create_parameter(param: ParameterCreate, db: Session = Depends(get_db)):
scen = db.query(Scenario).filter(Scenario.id == param.scenario_id).first()
if not scen:
raise HTTPException(status_code=404, detail="Scenario not found")
new_param = Parameter(scenario_id=param.scenario_id,
name=param.name, value=param.value)
db.add(new_param)
db.commit()
db.refresh(new_param)
return new_param
@router.get("/", response_model=List[ParameterRead])
def list_parameters(db: Session = Depends(get_db)):
return db.query(Parameter).all()

23
routes/reporting.py Normal file
View File

@@ -0,0 +1,23 @@
from fastapi import APIRouter, HTTPException, Depends
from typing import Dict, Any
from services.reporting import generate_report
from sqlalchemy.orm import Session
from config.database import SessionLocal
router = APIRouter(prefix="/api/reporting", tags=["Reporting"])
def get_db():
db = SessionLocal()
try:
yield db
finally:
db.close()
@router.post("/summary", response_model=Dict[str, float])
async def summary_report(results: Any):
# Expect a list of simulation result dicts
if not isinstance(results, list):
raise HTTPException(status_code=400, detail="Invalid input format")
report = generate_report(results)
return report

52
routes/scenarios.py Normal file
View File

@@ -0,0 +1,52 @@
from fastapi import APIRouter, Depends, HTTPException
from sqlalchemy.orm import Session
from config.database import SessionLocal
from models.scenario import Scenario
from pydantic import BaseModel
from typing import Optional
from datetime import datetime
router = APIRouter(prefix="/api/scenarios", tags=["scenarios"])
# Pydantic schemas
class ScenarioCreate(BaseModel):
name: str
description: Optional[str] = None
class ScenarioRead(ScenarioCreate):
id: int
created_at: datetime
updated_at: Optional[datetime] = None
class Config:
orm_mode = True
# Dependency
def get_db():
db = SessionLocal()
try:
yield db
finally:
db.close()
@router.post("/", response_model=ScenarioRead)
def create_scenario(scenario: ScenarioCreate, db: Session = Depends(get_db)):
db_s = db.query(Scenario).filter(Scenario.name == scenario.name).first()
if db_s:
raise HTTPException(status_code=400, detail="Scenario already exists")
new_s = Scenario(name=scenario.name, description=scenario.description)
db.add(new_s)
db.commit()
db.refresh(new_s)
return new_s
@router.get("/", response_model=list[ScenarioRead])
def list_scenarios(db: Session = Depends(get_db)):
return db.query(Scenario).all()

25
routes/simulations.py Normal file
View File

@@ -0,0 +1,25 @@
from fastapi import APIRouter, HTTPException, Depends
from typing import List
from services.simulation import run_simulation
from sqlalchemy.orm import Session
from config.database import SessionLocal
router = APIRouter(prefix="/api/simulations", tags=["Simulations"])
def get_db():
db = SessionLocal()
try:
yield db
finally:
db.close()
@router.post("/run", response_model=List[dict])
async def simulate(params: List[dict], iterations: int = 1000, db: Session = Depends(get_db)):
if not params:
raise HTTPException(status_code=400, detail="No parameters provided")
# TODO: you might use db to fetch scenario info or persist results
results = run_simulation(params, iterations)
return results

15
services/reporting.py Normal file
View File

@@ -0,0 +1,15 @@
from typing import List, Dict
def generate_report(simulation_results: List[Dict[str, float]]) -> Dict[str, float]:
"""
Generate summary report from simulation results.
Args:
simulation_results: List of dicts with 'iteration' and 'result'.
Returns:
Dictionary with summary statistics (e.g., mean, median).
"""
# TODO: implement reporting logic (e.g., calculate mean, median, percentiles)
return {}

17
services/simulation.py Normal file
View File

@@ -0,0 +1,17 @@
from typing import Dict, List
def run_simulation(parameters: List[Dict[str, float]], iterations: int = 1000) -> List[Dict[str, float]]:
"""
Run Monte Carlo simulation with given parameters.
Args:
parameters: List of parameter dicts with keys 'name' and 'value'.
iterations: Number of simulation iterations.
Returns:
List of simulation result dicts for each iteration.
"""
# TODO: implement Monte Carlo logic
results: List[Dict[str, float]] = []
return results